Linear-Time Generation of Random Chordal Graphs
نویسندگان
چکیده
Chordal graphs form one of the most well studied graph classes. Several graph problems that are NP-hard in general become solvable in polynomial time on chordal graphs, whereas many others remain NP-hard. For a large group of problems among the latter, approximation algorithms, parameterized algorithms, and algorithms with moderately exponential or sub-exponential running time have been designed. Chordal graphs have also gained increasing interest during the recent years in the area of enumeration algorithms. Being able to test these algorithms on instances of chordal graphs is crucial for understanding the concepts of tractability of hard problems on graph classes. Unfortunately, only few published papers give algorithms for generating chordal graphs. Even in these papers, only very few methods aim for generating a large variety of chordal graphs. Surprisingly, none of these methods is based on the “intersection of subtrees of a tree” characterization of chordal graphs. In this paper, we give an algorithm for generating chordal graphs, based on the characterization that a graph is chordal if and only if it is the intersection graph of subtrees of a tree. The complexity of our algorithm is linear in the size of the produced graph. We give test results to show the variety of chordal graphs that are produced, and we compare these results to existing results.
منابع مشابه
Complement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملFast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs
In this paper, we present a linear-time algorithm for substitution decomposition on chordal graphs. Based on this result, we develop a linear-time algorithm for transitive orientation on chordal comparability graphs, which reduces the complexity of chordal comparability recognition from O(n) to O(n+m). We also devise a simple linear-time algorithm for interval graph recognition where no complic...
متن کاملThe Existence of Homeomorphic Subgraphs in Chordal Graphs
We establish conditions for the existence, in a chordal graph, of subgraphs homeomorphic to Kn (n ≥ 3), Km,n (m,n ≥ 2), and wheels Wr (r ≥ 3). Using these results, we develop a simple linear time algorithm for testing planarity of chordal graphs. We also show how these results lead to simple polynomial time algorithms for the Fixed Subgraph Homeomorphism problem on chordal graphs for some speci...
متن کاملMaximum induced matching problem on hhd-free graphs
An induced matching in a graph is a set of edges such that no two edges in the set are joined by any third edge of the graph. An induced matching is maximum (MIM) if the number of edges in it is the largest among all possible induced matchings. It is known that finding the size of a MIM in a graph is NP-hard even if the graph is bipartite. It is also known that the size of a MIM in a chordal gr...
متن کاملAn Implicit Representation of Chordal Comparabilty Graphs in Linear-Time
Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, given two vertices, it can be determined in O(1) ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017